27 research outputs found

    Modern computing: Vision and challenges

    Get PDF
    Over the past six decades, the computing systems field has experienced significant transformations, profoundly impacting society with transformational developments, such as the Internet and the commodification of computing. Underpinned by technological advancements, computer systems, far from being static, have been continuously evolving and adapting to cover multifaceted societal niches. This has led to new paradigms such as cloud, fog, edge computing, and the Internet of Things (IoT), which offer fresh economic and creative opportunities. Nevertheless, this rapid change poses complex research challenges, especially in maximizing potential and enhancing functionality. As such, to maintain an economical level of performance that meets ever-tighter requirements, one must understand the drivers of new model emergence and expansion, and how contemporary challenges differ from past ones. To that end, this article investigates and assesses the factors influencing the evolution of computing systems, covering established systems and architectures as well as newer developments, such as serverless computing, quantum computing, and on-device AI on edge devices. Trends emerge when one traces technological trajectory, which includes the rapid obsolescence of frameworks due to business and technical constraints, a move towards specialized systems and models, and varying approaches to centralized and decentralized control. This comprehensive review of modern computing systems looks ahead to the future of research in the field, highlighting key challenges and emerging trends, and underscoring their importance in cost-effectively driving technological progress

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Electrical Properties and Functional Expression of Ionic Channels in Cochlear Inner Hair Cells of Mice Lacking the α10 Nicotinic Cholinergic Receptor Subunit

    No full text
    Cochlear inner hair cells (IHCs) release neurotransmitter onto afferent auditory nerve fibers in response to sound stimulation. During early development, synaptic transmission is triggered by spontaneous Ca2+ spikes which are modulated by an efferent cholinergic innervation to IHCs. This synapse is inhibitory and mediated by the α9α10 nicotinic cholinergic receptor (nAChR). After the onset of hearing, large-conductance Ca2+-activated K+ channels are acquired and both the spiking activity and the efferent innervation disappear from IHCs. In this work, we studied the developmental changes in the membrane properties of cochlear IHCs from α10 nAChR gene (Chrna10) “knockout” mice. Electrophysiological properties of IHCs were studied by whole-cell recordings in acutely excised apical turns of the organ of Corti from developing mice. Neither the spiking activity nor the developmental functional expression of voltage-gated and/or calcium-sensitive K+ channels is altered in the absence of the α10 nAChR subunit. The present results show that the α10 nAChR subunit is not essential for the correct establishment of the intrinsic electrical properties of IHCs during development
    corecore